

West Offaly Power Phased Transition to Biomass

Surface Water Drainage Design

Prepared by

Bord na Móna

Civil Engineering Office

DOCUMENT CONTROL SHEET

Client	ESB – Wes	ESB – West Offaly Power									
Project Title	Phased Tra	Phased Transition to Biomass WOP									
Document Title	Drainage D	Drainage Design									
Document No.	PG-WOP-0	PG-WOP-03-RP-02									
This Document	DCS	DCS TOC Text List of Tables List of Appendices									
Comprises			7		1	4					

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
А	Issue	DK	MG	MG	BnM ENG	01/05/2018
					DEPARTMENT	
В	lagua	DK BnM and			BnM ENG	30/05/2018
D	Issue	RMcG ESBI			DEPARTMENT	30/05/2016
С	lagua	DK BnM and			BnM ENG	14/06/2018
C	Issue	RMcG ESBI			DEPARTMENT	14/00/2010
D	Issue	DK BnM and			BnM ENG	19/10/2018
	Issue	RMcG ESBI			DEPARTMENT	19/10/2016
Е	Issue	DK BnM and			BnM ENG	2211/2018
	Issue	RMcG ESBI			DEPARTMENT	2211/2010

2

Contents

7.	Conclusion	8
6.	Surface Water Quality	7
5.	Surface Water Attenuation	6
4.	General Drainage Proposals	4
3.	Biomass Storage Slab B	4
2.	Biomass Storage Slab A	4
1.	Introduction	4

Appendices

Appendix A:	Biomass Storage Slabs - Drawings of Proposed Drainage Network
Appendix B:	Biomass Storage Slabs - Typical Oil Interceptor Details
Appendix C:	Biomass Storage Slabs- Surface Water Attenuation Calculations
Appendix D:	Biomass Storage Slabs - Typical Attenuation Storage Details

1. Introduction

As part of the planning application for the proposed phased transition to biomass at West Offaly Power Station, it is proposed to provide two concrete slabs for the temporary storage of biomass such as woodchip. One of the proposed concrete slabs is located adjacent to the eastern entrance to the station referred to as Biomass Storage Slab B. The other slab is located immediately south of the existing Intermediate Peat Storage building and is referred to as Biomass Storage Slab A. As these storage slabs will be open to the elements, surface water runoff will be generated and this report sets out the proposals for collecting and discharging this surface water runoff.

2. Biomass Storage Slab A

This storage slab is accessed from the existing roundabout located at the eastern entrance to the West Offaly Power station. This is the entrance currently used for all peat deliveries by road and it is proposed to continue to use this entrance for all peat and biomass road deliveries under this planning application. The proposed slab is located to the south of the existing intermediate peat storage building. The area where the slab is to be located is currently a gravel hardstanding area.

The proposed storage area will be a reinforced concrete slab with an overall area of 3,924 square metres which includes turning areas and the entrance area. It is proposed to construct a pellet silo and a pellet intake building on the western boundary of the slab.

3. Biomass Storage Slab B

This storage slab is accessed from the existing roundabout located at the eastern entrance to the West Offaly Power station. The proposed slab is located north-west of an existing building currently used for storage of materials. The area where the slab is to be located is currently a gravel hardstanding area with some vegetation and small trees in the southern area of the site.

The proposed storage area will be a reinforced concrete slab with an overall area of 6,330 square metres which includes turning areas and the entrance area.

4. General Drainage Proposals

The biomass material to be stockpiled on the concrete slabs will consist of chipped pulp wood, imported woodchip and possibly other sustainable biomass materials such as sustainable and certified palm kernel shells. There will be no runoff or leachate from the biomass material deposited on the concrete slab other than that from rainfall that may fall on the slab and the biomass stockpile. It is envisaged that some of this rainfall will be absorbed by the biomass however in the run-off calculation this has not been taken into account. All surface water runoff from the biomass storage slabs shall discharge into the existing surface water drainage network for the power station, following primary treatment and attenuation. Surface water discharges from the power station will be subject to an Industrial Emissions

licence from the Environmental Protection Agency and regular monitoring of these discharges will be carried out to ensure compliance with this licence.

Due to the elevation of Slab B it will be necessary to pump the runoff from the slab via a rising main to an existing manhole within the station, which is located adjacent to the existing Lab and Office. Prior to being pumped, the surface water shall be attenuated and shall have discharged through silt traps, a settlement tank and an oil interceptor to reduce suspended solids and BOD levels. No pumping station is required for Slab A.

Details of the drainage layout plan are included in Appendix A. The pipe network has been designed using the Modified Rational Method. The design criteria for the pipe network is based on the provision of self-cleansing velocities between 0.75m/s and 3m/s and no surcharge in manholes for a storm event of 1 in 5 year return period.

Slab A has been designed so that surface water flows towards the centre of the slab into two concrete channels. The channels will be approximately 0.50 m deep and will discharge into an ACO drain situated along the eastern boundary of the slab. It is proposed that the ACO drain will be 0.30 m wide and 0.39 m deep. The ACO drain will then route flows through the primary treatment and attenuation systems. To prevent standing water on the concrete slab, a high point is provided along the centre of the slab and along the perimeter walls with a minimum crossfall of 1.5% to the concrete channel. A minimum longitudinal fall in an easterly direction along the channel of 1.0% will be provided. Regular cleaning of the channel shall be carried out to remove any biomass material that may have entered the channel.

Due to the existing elevations at the Slab B site the proposed pumping station will be located at the south west corner of the slab. The slab is designed with a 350mm wide x 250mm deep channel along all slab edges other than at the entrance road area where a normal 125mm kerb will be provided. A reinforced concrete upstand of 225mm is provided to the channel to ensure all run off is retained as shown in Figure 1 below. To prevent standing water on the concrete slab, a high point is provided along the centre of the slab with a minimum crossfall of 1.5% to the edge channel. A longitudinal fall of minimum 1% is provided in the drainage channel.

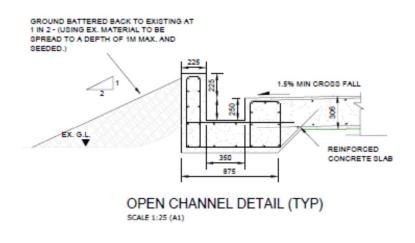


Figure 1: Typical Detail of edge drainage Channel - Slab B

The edge channels shall discharge into silt traps with internal dimensions of 2000mm x 1500mm to ensure settlement of sediment. Regular cleaning of the channel and silt traps shall be carried out to remove any biomass material that may have entered the channel.

Runoff on both slabs will then be diverted into a large settlement tank with internal dimensions of circa 8000mm x 2000mm. The settlement tank shall have baffle walls and screens to remove any floating sediment and a silt retention capacity of 15 cubic metres. Typical details of the proposed silt trap and settlement tank are included in the planning drawings.

Following on from the settlement tank, the surface water runoff shall discharge into a Full Retention Oil Interceptor Class 1 which is designed to achieve a concentration of less than 5mg/l of oil under standard test conditions. These interceptors are sized based on the area of the biomass slabs and Klargestor NSFA 080 for Slab A and Klargestor NSFA 125 for Slab B, or similar approved, are proposed. The interceptor will also provide additional silt storage capacity and in the case of the Klargestor NSFA 080 silt storage capacity of 8 cubic metres is provided while the NSFA 125 provides 12.5 cubic metres. Details of the oil interceptors are included in Appendix B as typical examples of the size and type of oil interceptor that will be required.

5. Surface Water Attenuation

All surface water from the biomass slabs shall be attenuated to limit the discharge from the slabs to greenfield run-off rate of 6.495 litres/sec/hectare. This can be achieved through the use of a flow control device or similar means to limit the flow discharging from the slab to greenfield rates. A flow control device such as a Hydro-brake or similar approved consists of a self –activating vortex flow control device that can be installed in the manhole upstream of the pumping station. This device will be sized

to restrict flow into the existing surface water network for Slab A and the pumping station for Slab B to the greenfield flow rates that would be generated from the slab areas. An overflow pipe shall be provided from this manhole into a storage area, or attenuation area, to accommodate storage of surface water in excess of green field flow during storm events. This stored volume will be slowly discharged over a period of time after the storm event. Alternatively, for Slab B, rather than using a flow control device, the proposed pump controls can be used to limit the discharge to green field run-off flows. The method used to limit the flow can be determined at detailed design stage.

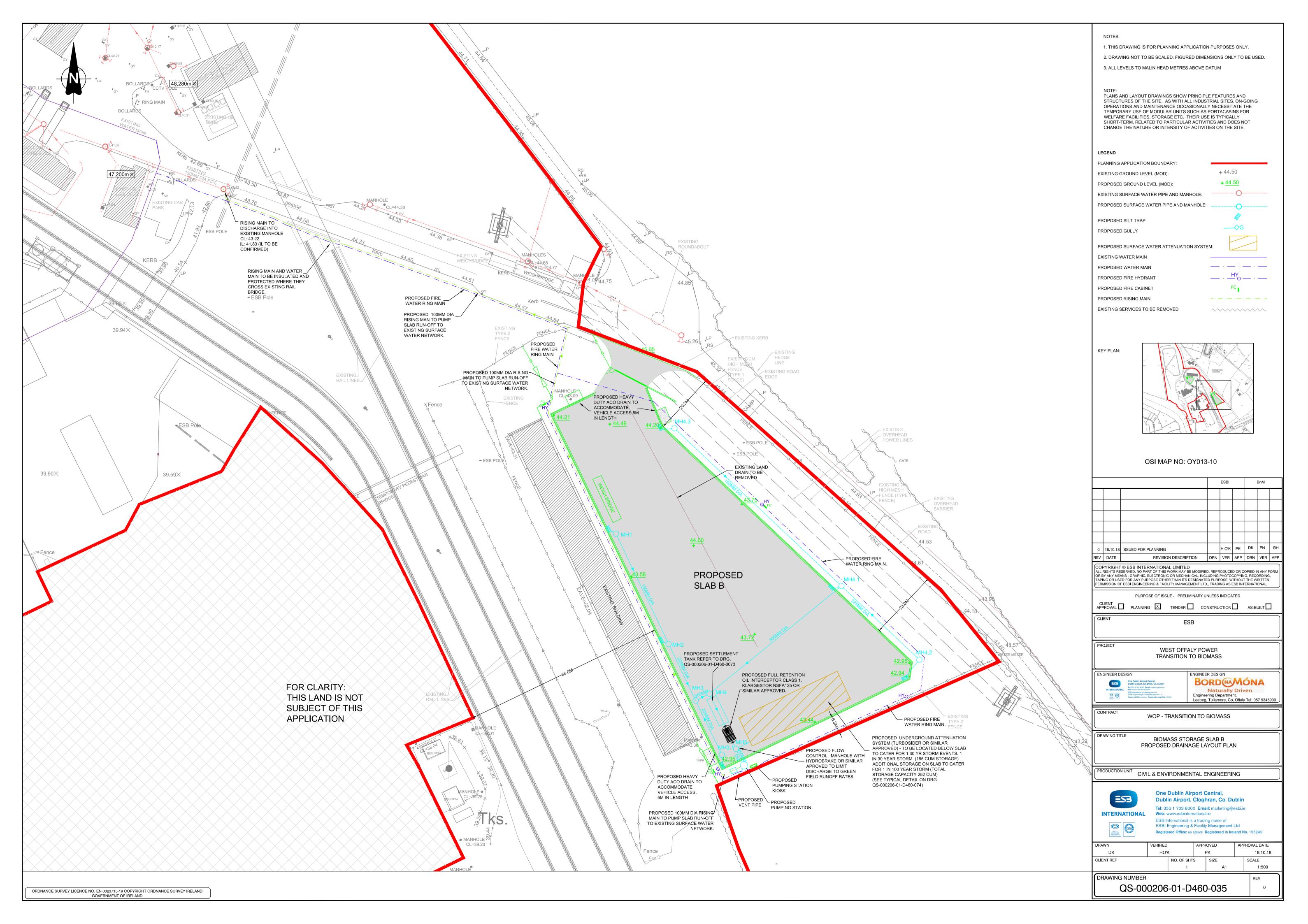
The attenuation areas have been sized to accommodate the surface water that would be generated on the slabs during a 30 year return period storm event. Additional storage has also been provided on the slab itself and in the edge channel and this volume combined with the attenuation storage volume, will provide adequate storage capacity for a 1 in 100 year return period storm event. The design calculations, including the rainfall matrix, used to size the attenuation storage requirement are attached in Appendix C. An additional allowance of 10% is added to the rainfall matrix to take account of future climate change. These calculations are based on the Greater Dublin Strategic Drainage Study, Regional Drainage Policies – Volume 2. This appendix also includes a sketch showing the area of Slab B that is used as attenuation for 30 to 100 year return period storm events.

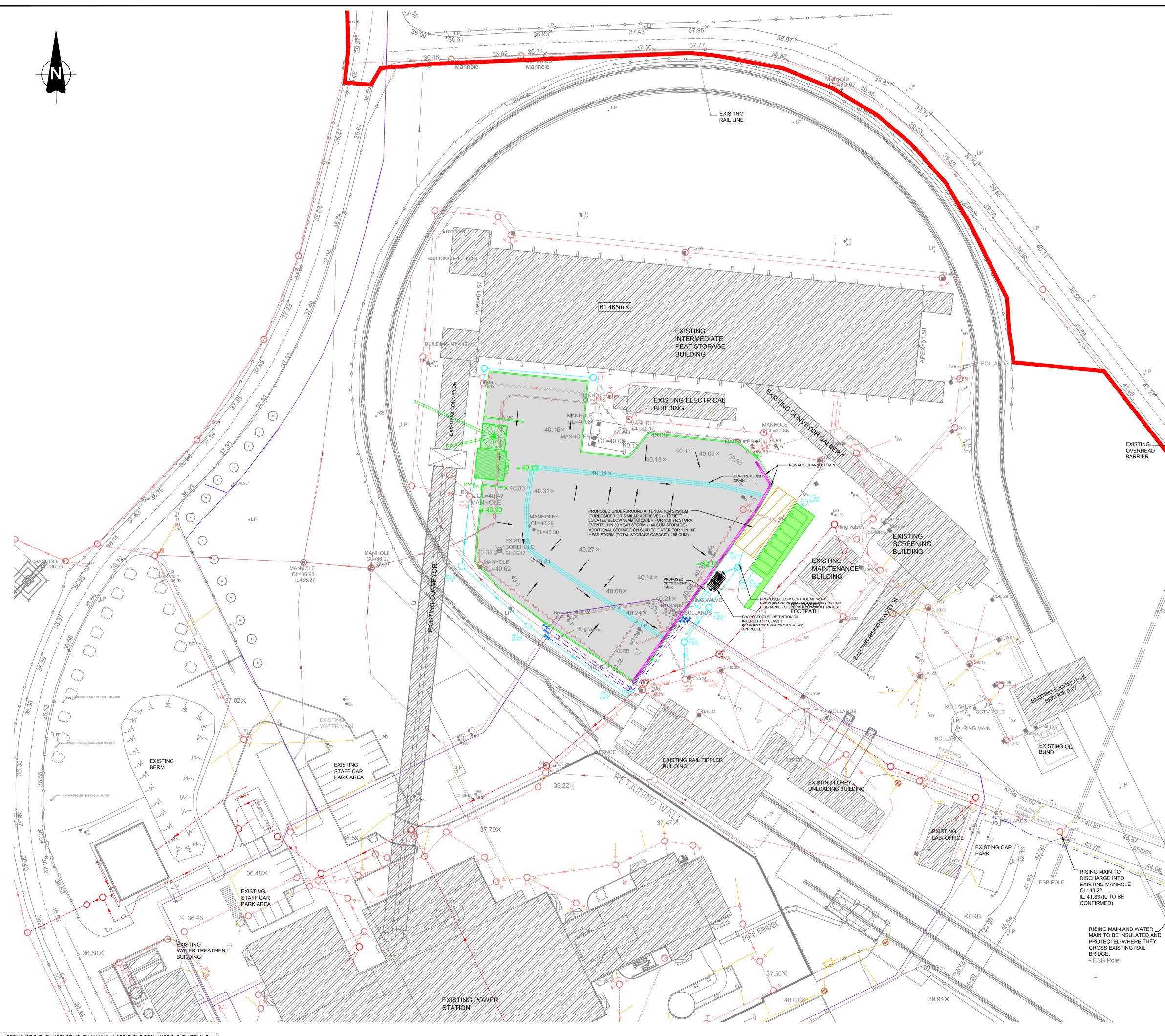
Details of a typical attenuation storage system, Tubosider, is attached in Appendix D.

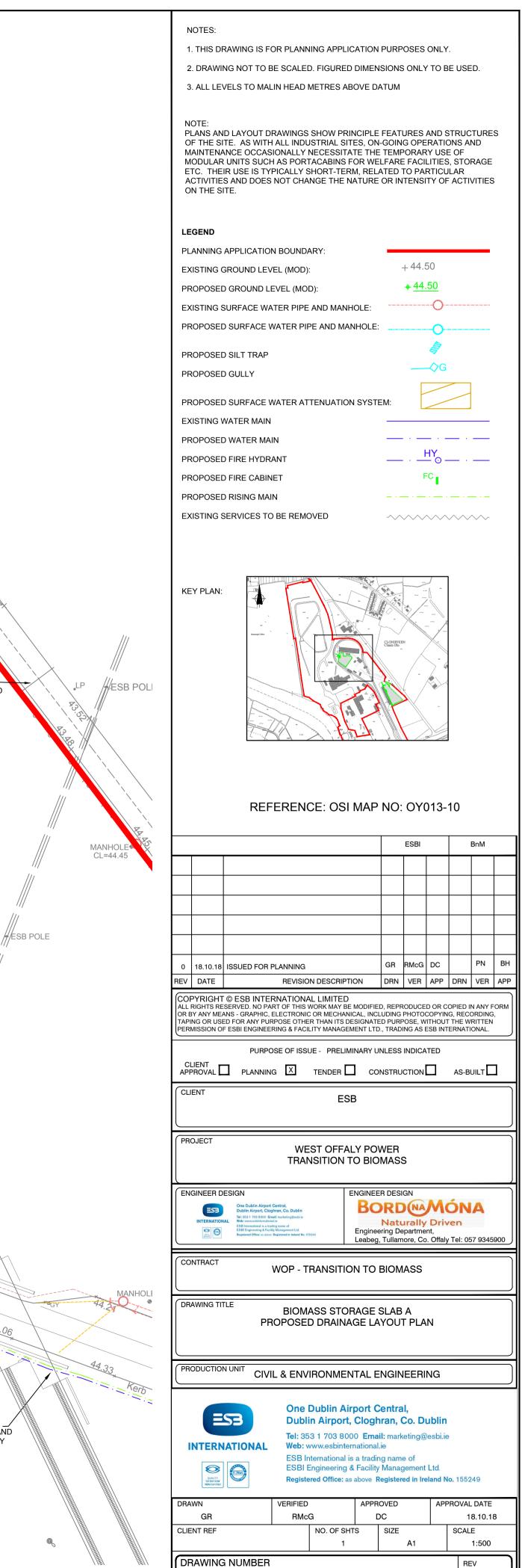
6. Surface Water Quality

The biomass supply to the power station will be on a just in time or JIT basis and generally lorries will deposit their biomass load directly into the lorry tipplers where it will be transported by conveyor into the existing Intermediate Peat Storage building and subsequently into the boiler. The biomass slabs will be used for short term storage of biomass only, to ensure adequate fuel for holiday periods, to accommodate unscheduled loads, to provide a buffer supply in the event of a weather forecast that may prevent road deliveries or to allow lorries to unload in the event of a problem with the tippler. It is envisaged that biomass material will be retained on the slabs for a short period of time with the deliveries operated on a first-in, first-out basis and the material will be removed within days rather than weeks. The proposed biomass material shall be organic in nature with a moisture content in the range of 20% to 65% and will be in dry form when deposited on the slabs. As the material will be stored for a short time there will be very minimal, if any, decomposition or degradation of the stockpiled material.

In dry weather there will be no runoff generated on the biomass slabs, however during rainfall events, surface water will be generated from rainfall on the slabs and the biomass stockpile. The biomass will be stockpiled in such a manner so as to ensure rainwater will run off the side of the stockpiles rather than pond on the top of the stockpile. The cross fall of the concrete slabs will also reduce standing water on the slabs. It is inevitable that some rain will penetrate the stockpile however, and while some of this will be absorbed by the biomass material, the runoff may accumulate some suspended solids and organic material. The primary settlement measures outlined above combined with restricted flow and


surface water attenuation as well as dilution with the surface water run-off from other paved areas in the power station will ensure that the runoff from the slabs will not impact on the surface water emission limits at the station. These emission limits will be determined and monitored by the Industrial Emissions licence for the power station from the Environmental Protection Agency.


7. Conclusion


All surface water discharges from the site will be subject to an EPA licencing regime. It is envisaged that any potential impacts from the additional surface water runoff due to the proposed biomass slabs will be mitigated by the provision of primary treatment and attenuation as described in this report.

Appendix A

Biomass Storage Slabs Drawings of Proposed Drainage Network

QS-000206-01-D460-037

0

Appendix B

Biomass Storage Slabs Typical Oil Interceptor Details

SEPARATORS

A RANGE OF FUEL/OIL SEPARATORS FOR PEACE OF MIND

Separators

A RANGE OF FUEL/OIL SEPARATORS FOR PEACE OF MIND

Surface water drains normally discharge to a watercourse or indirectly into underground waters (groundwater) via a soakaway. Contamination of surface water by oil, chemicals or suspended solids can cause these discharges to have a serious impact on the receiving water.

The Environment Regulators, Environment Agency, England and Wales, SEPA, Scottish Environmental Protection Agency in Scotland and Department of Environment & Heritage in Northern Ireland, have published guidance on surface water disposal, which offers a range of means of dealing with pollution both at source and at the point of discharge from site (so called 'end of pipe' treatment). These techniques are known as 'Sustainable Drainage Systems' (SuDS).

Where run-off is draining from relatively low risk areas such as car-parks and non-operational areas, a source control approach, such as permeable surfaces or infiltration trenches, may offer a suitable means of treatment, removing the need for a separator.

Oil separators are installed on surface water drainage systems to protect receiving waters from pollution by oil, which may be present due to minor leaks from vehicles and plant, from accidental spillage.

Effluent from industrial processes and vehicle washing should normally be discharged to the foul sewer (subject to the approval of the sewerage undertaker) for further treatment at a municipal treatment works.

SEPARATOR STANDARDS AND TYPES

A British (and European) standard (EN 858-1 and 858-2) for the design and use of prefabricated oil separators has been adopted. New prefabricated separators should comply with the standard.

SEPARATOR CLASSES

The standard refers to two 'classes' of separator, based on performance under standard test conditions.

CLASS I

Designed to achieve a concentration of less than 5mg/l of oil under standard test conditions, should be used when the separator is required to remove very small oil droplets.

CLASS II

Designed to achieve a concentration of less than 100mg/l oil under standard test conditions and are suitable for dealing with discharges where a lower quality requirement applies (for example where the effluent passes to foul sewer).

Both classes can be produced as full retention separators. The oil concentration limits of 5 mg/l and 100 mg/l are only applicable under standard test conditions. It should not be expected that separators will comply with these limits when operating under field conditions.

FULL RETENTION SEPARATORS

Full retention separators treat the full flow that can be delivered by the drainage system, which is normally equivalent to the flow generated by a rainfall intensity of 65mm/hr.

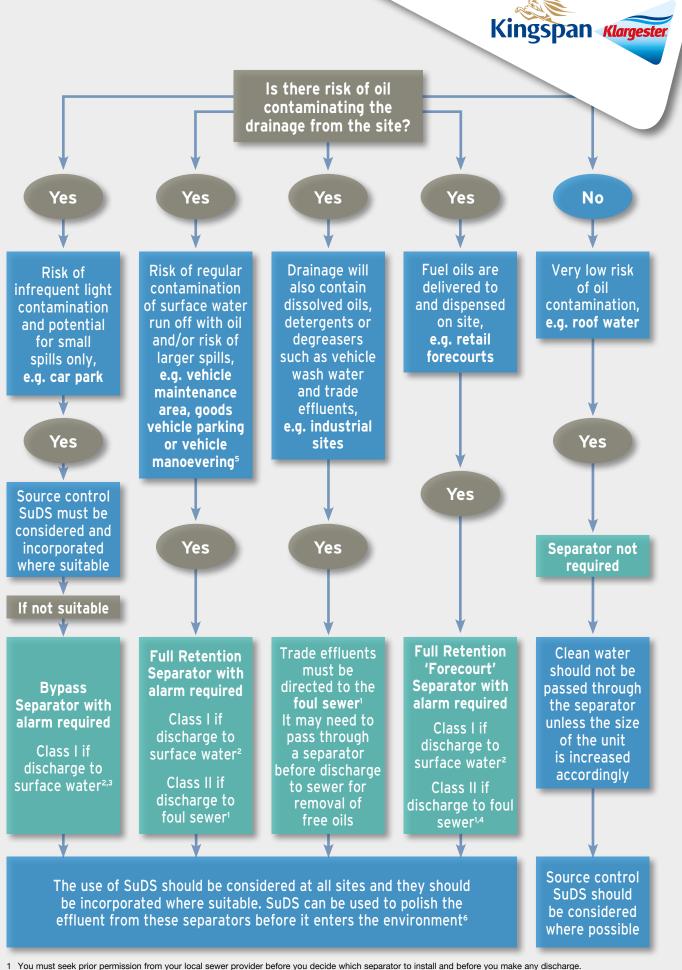
On large sites, some short term flooding may be an acceptable means of limiting the flow rate and hence the size of full retention systems. Get in touch for a FREE professional site visit and a representative will contact you within 5 working days to arrange a visit.

helpingyou@klargester.com to make the right decision or call 028 302 66799

BYPASS SEPARATORS

Bypass separators fully treat all flows generated by rainfall rates of up to 6.5mm/hr. This covers over 99% of all rainfall events. Flows above this rate are allowed to bypass the separator. These separators are used when it is considered an acceptable risk not to provide full treatment for high flows, for example where the risk of a large spillage and heavy rainfall occurring at the same time is small.

FORECOURT SEPARATORS


Forecourt separators are full retention separators specified to retain on site the maximum spillage likely to occur on a petrol filling station. They are required for both safety and environmental reasons and will treat spillages occurring during vehicle refuelling and road tanker delivery. The size of the separator is increased in order to retain the possible loss of the contents of one compartment of a road tanker, which may be up to 7,600 litres.

SELECTING THE RIGHT SEPARATOR

The chart on the following page gives guidance to aid selection of the appropriate type of fuel/oil separator for use in surface water drainage systems which discharge into rivers and soakaways.

For further detailed information, please consult the Environment Agency Pollution Prevention Guideline 03 (PPG 3) 'Use and design of oil separators in surface water drainage systems' available from their website.

Kingspan Klargester has a specialist team who provide technical assistance in selecting the appropriate separator for your application.

² You must seek prior permission from the relevant environmental body before you decide which separator to install.

In this case, if it is considered that there is a low risk of pollution a source control SuDS scheme may be appropriate. 3

⁴ In certain circumstances, the sewer provider may require a Class 1 separator for discharges to sewer to prevent explosive atmospheres from being generated.

⁵ Drainage from higher risk areas such as vehicle maintenance yards and goods vehicle parking areas should be connected to foul sewer in preference to surface water.

⁶ In certain circumstances, a separator may be one of the devices used in the SuDS scheme. Ask us for advice.

Bypass NSB RANGE

APPLICATION

Bypass separators are used when it is considered an acceptable risk not to provide full treatment, for very high flows, and are used, for example, where the risk of a large spillage and heavy rainfall occurring at the same time is small, e.g.

- Surface car parks.
- Roadways.
- Lightly contaminated commercial areas.

PERFORMANCE

Klargester were one of the first UK manufacturers to have separators tested to EN 858-1. Klargester have now added the NSB bypass range to their portfolio of certified and tested models. The NSB number denotes the maximum flow at which the separator treats liquids. The British Standards Institute (BSI) tested the required range of Kingspan Klargester Bypass separators and certified their performance in relation to their flow and process performance assessing the effluent gualities to the requirements of EN 858-1. Klargester bypass separator designs follow the parameters determined during the testing of the required range of bypass separators.

Each bypass separator design includes the necessary volume requirements for:

- Oil separation capacity. Oil storage volume. .
- Silt storage capacity. **.**

The unit is designed to treat 10% of peak flow. The calculated drainage areas served by each separator are indicated according to the formula given by PPG3 NSB = 0.0018A(m2). Flows generated by higher rainfall rates will pass through part of the separator and bypass the main separation chamber.

.

Coalescer.

Class I separators are designed to achieve a concentration of 5mg/litre of oil under standard test conditions.

FEATURES

- Light and easy to install.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.
- н. Vent points within necks.
- Oil alarm system available (required by EN 858-1 and PPG3).

ire less

- н. Extension access shafts for deep inverts.
- Maintenance from ground level. .
- GRP or rotomoulded construction (subject to model). н.

To specify a nominal size bypass separator, the following information is needed:-

- The calculated flow rate for the drainage area served. Our designs are based on the assumption that any interconnecting pipework fitted elsewhere on site does not impede flow into or out of the separator and that the flow is not pumped.
- The drain invert inlet depth.
- Pipework type, size and orientation. .

STANDARD DRAINAGE UNIT FLOW PEAK FLOW STORAGE UNIT UNIT DIA. ACCESS BASE TO BASE TO STANDARD MIN. INLET NOMINAL CAPACITY (litres) INLET INVERT FALL ACROSS (l/s) RATE (I/s) AREA (m²) LENGTH (mm) (mm) SHAFT OUTLET INVERT PIPEWORK OIL SIZE DIA. (mm) INVERT DIA SILT (mm) (mm) (mm) NSBP003 NSBP004 NSBP006 NSBE010 NSBE015 NSBE020 NSBE025 NSBE030 NSBE040 NSBE050 NSBF075 NSBF100 NSBE125

SIZES AND SPECIFICATIONS

Full Retention NSF RANGE

APPLICATION

Full retention separators are used in high risk spillage areas such as:

- Fuel distribution depots.
- Vehicle workshops.
- Scrap Yards

PERFORMANCE

Kingspan Klargester were the first UK manufacturer to have the required range (3-30 l/sec) certified to EN 858-1 in the UK. The NSF number denotes the flow at which the separator operates.

The British Standards Institute (BSI) have witnessed the performance tests of the required range of separators and have certified their performance, in relation to their flow and process performance to ensure that they met the effluent quality requirements of EN 858-1. Larger separator designs have been determined using the formulas extrapolated from the test range.

Each full retention separator design includes the necessary volume requirements for:

- Oil storage volume.
- Oil separation capacity. Silt storage capacity.
- Coalescer (Class I units only).
- Automatic closure device.

Klargester full retention separators treat the whole of the specified flow.

FEATURES

- Light and easy to install.
- Class I and Class II designs.
- 3-30 l/sec range independently tested and performance sampled, certified by the BSI.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.

- Oil alarm system available.
- Vent points within necks.
- Extension access shafts for deep inverts.
- Maintenance from ground level.
- GRP or rotomoulded construction (subject to model).

To specify a nominal size full retention separator, the following information is needed:-

■ The calculated flow rate for the drainage area served. Our designs are based on the assumption that any interconnecting pipework fitted elsewhere on site does not impede flow into or out of the separator and that the influent is not pumped.

Kingspan Klargester

Advanced omoulded construction on selected models

Compact and robust

equire less backfill

, lightweight and

- The required discharge standard. This will decide whether a Class I or Class II unit is required.
- The drain invert inlet depth.
- Pipework type, size and orientation.

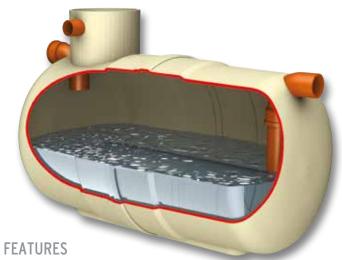
SIZES AND SPECIFICATIONS

UNIT Nominal	FLOW (I/s)	DRAINAGE AREA (m²) PPG-3 (0.018)		CAPACITY tres)	UNIT LENGTH (mm)	UNIT DIA. (mm)	BASE TO INLET INVERT	BASE TO OUTLET	MIN. INLET INLET (mm)	STANDARD PIPEWORK
SIZE			SILT	OIL			(mm)	INVERT		DIA. (mm)
NSFP003	3	170	300	30	1700	1350	1420	1345	500	160
NSFP006	6	335	600	60	1700	1350	1420	1345	500	160
NSFA010	10	555	1000	100	2610	1225	1050	1000	500	200
NSFA015	15	835	1500	150	3910	1225	1050	1000	500	200
NSFA020	20	1115	2000	200	3200	2010	1810	1760	1000	315
NSFA030	30	1670	3000	300	3915	2010	1810	1760	1000	315
NSFA040	40	2225	4000	400	4640	2010	1810	1760	1000	315
NSFA050	50	2780	5000	500	5425	2010	1810	1760	1000	315
NSFA065	65	3610	6500	650	6850	2010	1810	1760	1000	315
NSFA080	80	4445	8000	800	5744	2820	2500	2450	1000	300
NSFA100	100	5560	10000	1000	6200	2820	2500	2450	1000	400
NSFA125	125	6945	12500	1250	7365	2820	2500	2450	1000	450
NSFA150	150	8335	15000	1500	8675	2820	2550	2450	1000	525
NSFA175	175	9725	17500	1750	9975	2820	2550	2450	1000	525
NSFA200	200	11110	20000	2000	11280	2820	2550	2450	1000	600

Rotomoulded chamber construction GRP chamber construction

Washdown & Silt

APPLICATION


This unit can be used in areas such as car wash and other cleaning facilities that discharge directly into a foul drain, which feeds to a municipal treatment facility.

If emulsifiers are present the discharge must not be allowed to enter an NS Class I or Class II unit.

- Car wash.
- Tool hire depots.
- Truck cleansing.
- Construction compounds cleansing points.

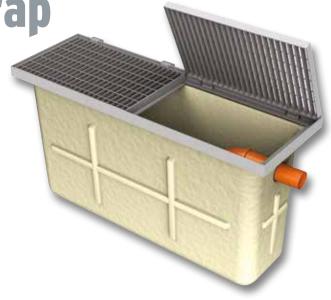
PERFORMANCE

Such wash down facilities must not be allowed to discharge directly into surface water but must be directed to a foul connection leading to a municipal treatment works as they utilise emulsifiers, soaps and detergents, which can dissolve and disperse the oils.

- Light and easy to install.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.
- Vent points within necks.
- Extension access shafts for deep inverts.
- Maintenance from ground level.

SIZES AND SPECIFICATIONS

REF.	TOTAL CAPACITY (litres)	MAX. REC. Silt	MAX. FLOW RATE (I/s)	LENGTH (mm)	DIAMETER (mm)	ACCESS SHAFT DIA. (mm)	BASE TO INLET INVERT (mm)	BASE TO OUTLET INVERT (mm)	STANDARD FALL ACROSS UNIT (mm)	MIN. INLET INVERT (mm)	STANDARD PIPEWORK DIA. (mm)	APPROX EMPTY (kg)
W1/010	1000	500	3	1123	1225	460	1150	1100	50	500	160	60
W1/020	2000	1000	5	2074	1225	460	1150	1100	50	500	160	120
W1/030	3000	1500	8	2952	1225	460	1150	1100	50	500	160	150
W1/040	4000	2000	11	3898	1225	460	1150	1100	50	500	160	180
W1/060	6000	3000	16	4530	1440	600	1360	1310	50	500	160	320
W1/080	8000	4000	22	3200	2020	600	2005	1955	50	500	160	585
W1/100	10000	5000	27	3915	2020	600	2005	1955	50	500	160	680
W1/120	12000	6000	33	4640	2020	600	2005	1955	50	500	160	770
W1/150	15000	7500	41	5435	2075	600	1940	1890	50	500	160	965
W1/190	19000	9500	52	6865	2075	600	1940	1890	50	500	160	1200


Car Wash Silt Trap

APPLICATION

Car Wash silt trap is designed for use before a separator in car wash applications to ensure effective silt removal.

FEATURES

- FACTA Class B covers.
- Light and easy to install.
- Maintenance from ground level.

Forecourt

APPLICATION

The forecourt separator is designed for installation in petrol filling station forecourts and similar applications. The function of the separator is to intercept hydrocarbon pollutants such as petroleum and oil and prevent their entry to the drainage system, thus protecting the environment against hydrocarbon contaminated surface water run-off and gross spillage.

PERFORMANCE

Operation ensures that the flow cannot exit the unit without first passing through the coalescer assembly.

In normal operation, the forecourt separator has sufficient capacity to provide storage for separated pollutants within the main chamber, but is also able to contain up to 7,600 litres of pollutant arising from the spillage of a fuel delivery tanker compartment on the petrol forecourt. The separator has been designed to ensure that oil cannot exit the separator in the event of a major spillage, subsequently the separator should be emptied immediately.

FEATURES

- Light and easy to install.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.
- Vent points within necks.
- Extension access shafts for deep inverts.
- Maintenance from ground level.

SIZES AND SPECIFICATIONS

- Class I and Class II design.
- Oil storage volume.
- Coalescer (Class I unit only).
- Automatic closure device.
- Oil alarm system available.

INSTALLATION

The unit should be installed on a suitable concrete base slab and surrounded with concrete or pea gravel backfill. See sales drawing for installation.

Kingspan Klargester

If the separator is to be installed within a trafficked area, then a suitable cover slab must be designed to ensure that loads are not transmitted to the unit.

The separator should be installed and vented in accordance with Health and Safety Guidance Note HS(G)41 for filling stations, subject to Local Authority requirements.

ENVIROCEPTOR CLASS	TOTAL CAP. (litres)	DRAINAGE AREA (m²)	MAX. FLOW RATE (I/s)	LENGTH (mm)	DIAMETER (mm)	ACCESS SHAFT DIA. (mm)	BASE TO INLET INVERT (mm)	BASE TO OUTLET INVERT (mm)	STD. FALL ACROSS UNIT (mm)	MIN. INLET INVERT (mm)	STD. PIPEWORK (mm)	EMPTY WEIGHT (kg)
1	10000	555	10	3963	1920	600	2110	2060	50	400	160	500
Ш	10000	555	10	3963	1920	600	2110	2060	50	400	160	500
1	10000	1110	20	3963	1920	600	2110	2060	50	400	200	500
II	10000	1110	20	3963	1920	600	2110	2060	50	400	200	500

Alarm Systems

British European Standard EN 858-1 and Environment Agency Pollution Prevention Guideline PPG3 requires that all separators are to be fitted with an oil level alarm system and that it should be installed and calibrated by a suitably qualified technician so that it will respond to an alarm condition when the separator requires emptying.

- Easily fitted to existing tanks.
- Excellent operational range.
- Visual and audible alarm.
- Additional telemetry option.

PROFESSIONAL INSTALLERS

Kingspan Klargester Accredited Installers Experience shows that correct installation is a prerequisite for the long-lasting and successful operation of any wastewater treatment product. This is why using an installer with the experience and expertise

to install your product is highly recommended.

Services include :

- Site survey to establish ground conditions and soil types
- Advice on system design and product selection
- Assistance on gaining environmental consents and building approvals
- Tank and drainage system installation
- Connection to discharge point and electrical networks
- Waste emptying and disposal

Discover more about the Accredited Installers and locate your local expert online.

www.kingspanenviro.com/klargester

COMMERCIAL WASTEWATER SOLUTIONS

- BIODISC® & ENVIROSAFE HIGH PERFORMANCE SEWAGE TREATMENT SYSTEMS
- PACKAGE PUMP STATIONS
- PUMPSTOR24 PUMPING SYSTEMS
- OIL/WATER SEPARATORS
- BELOW GROUND STORAGE TANKS
- GREASE & SILT TRAPS

CARE & MAINTENANCE

Kingspan Environmental Services Who better to look after your treatment plant than the people who designed and built it?

Kingspan Environmental have a dedicated service division providing maintenance for wastewater products.

Factory trained engineers are available for site visits as part of a planned maintenance contract or on a one-off call out basis.

To find out more about protecting your investment and ensuring peace of mind, call us on:

0844 846 0500

or visit us online: www.kingspanenvservice.com

RAINWATER SOLUTIONS

- BELOW GROUND RAINWATER HARVESTING SYSTEMS
- ABOVE GROUND RAINWATER HARVESTING SYSTEMS

Klargester

UK: College Road North, Aston Clinton, Aylesbury, Buckinghamshire HP22 5EW Tel: +44 (0) 1296 633000 Fax: +44 (0) 1296 633001 Scottish Office: Tel: +44 (0) 1355 248484 email: klargester@kingspan.com

 Ireland:
 Unit 1a, Derryboy Road, Carnbane Business Park, Newry, Co. Down BT35 6QH

 NI Tel: +44 (0) 28 302 66799
 Fax: +44 (0) 28 302 60046
 ROI Tel: 048 302 66799
 Fax: 048 302 60046

 email:
 klargesterinfo@kingspan.com
 Karabara
 Karabara
 Karabara

©CDD≋

Environmental

Part of

Certificate No. FM 575486

Certificate No. OHS 575489

In keeping with Company policy of continuing research and development and in order to offer our clients the most advanced products, Kingspan Environmental reserves the right to alter specifications and drawings without prior notice.

Appendix C

Biomass Storage Slabs Surface Water Attenuation Calculations

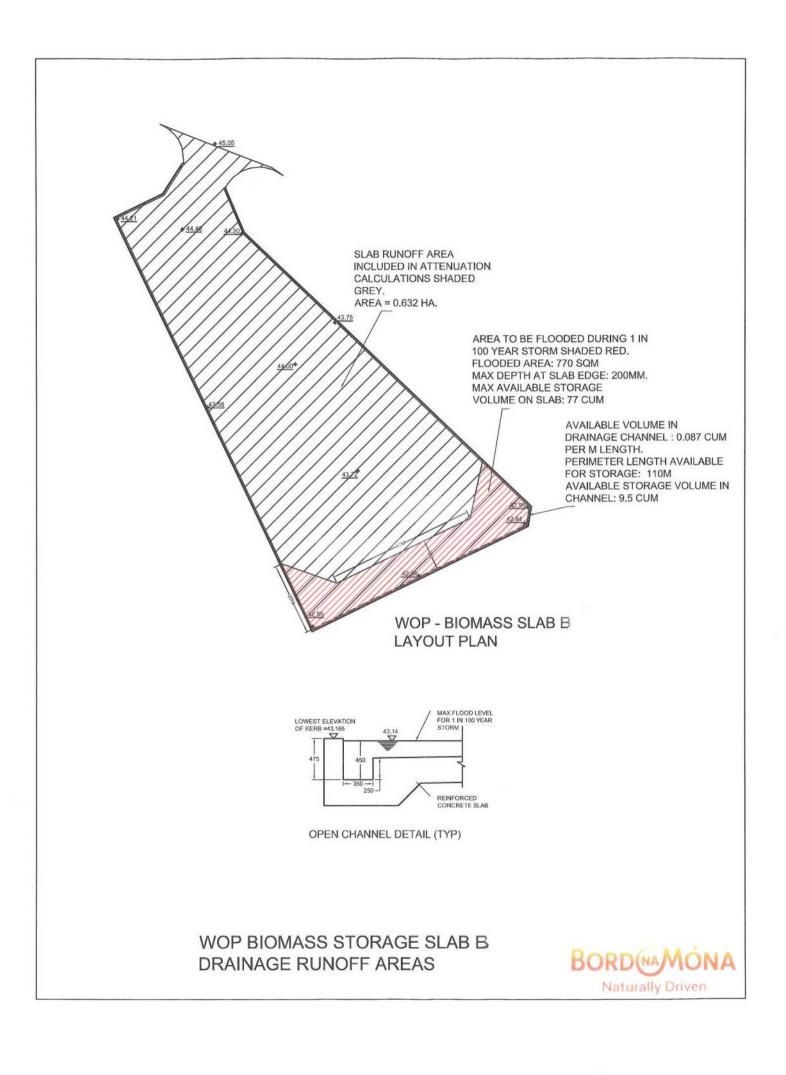
BORD		CALCULATI	ON SHEE	т		Ref No.	PG-WOP-04-DD- 01
Project		WOP Bioma	ass - Bion	nass Storage	Slab B	Sheet No.	1 of 4
						Designer.	D.K.
Element		Greenfield F	Runoff and	Attenuation	Calc.	Date	26/01/2018
Runoff Estimat		ned in accordance	with the Greate	er Dublin Strategic	Drainage Study (GDSDS)	
Q _{bar} =	0.00108*(AREA) ^{0.89} ,	*(SAAR) ^{1.17} *(SOIL) ²	.17				
SAAR =	902	Taken from Met Ei	reann 1981 - 201	0 records			
SOIL = take	<mark>4</mark> 0.47		Taken from the	winter rain acceptanc	e potential map		
1 ha =	= 100 ha = 10,000m ²						
*Note: Q _{bar} form Total Site Area	nula only suitable for 0.632	sites greater than / Hectares	equal to 50 hecta	ares Hardstanding Area	0.632	Hectares	
Take	50	Hectares	-	Roof Area	0.000	Hectares	
*Qbar	0.50 0.325	km² (m³/s)		Landscaped Areas	0.000	Hectares	
Surface Water	Storage	- ` ´					
	e calculation attached	1					
	wable runoff per site						
*** Note Storage	e is the volume requi	red to attenuate the	surface water in	excess of green field	d runoff.		
Area	Area	Calc. Allowable	Calc. Allowable	Calc. Allowable	**Actual	Actual	I
Reference	(ha)	Runoff (m ³ /s)	Runoff (I/s)	Runoff (I/s/ha)	Allowable runoff (l/s/ha)	Allowable runoff (I/s)	
Development	0.63	0.00410	4.105	6.495	6.495	4.105	
							_
							Cumlative
т	Multiplior	Flow	r	4 Va Thurstella	Flow	Storage	Storage
1	Multiplier 0.85	Flow 3.489		1 Yr Throttle 30 - 1Yr Throttle	3.489 5.131	63 123	63 185
2	0.92	3.776		100 - 30 Yr Throttle	2.052	66	252
10	1.67	6.855					
20	1.96	8.046					
30	2.10	8.620					
50	2.33	9.564					
100 ****Note Multipl	2.60 ier taken from GDSD	10.673					
	Storage Required		m ³				
	0.0.49004404						

BORD MÁÓ				C	ALCUL	ATION S	SHEET	Ref No.	PG-WOP-04-DD-01
Project		WO	P Biom	ass St	orage S	Slab B		Sheet No.	2 of 4
Element	<u> </u>	roonfiel		ff and	Attonu	ation Ca		Designer.	D.K
Liement	G	eenne			Allenu			Date	26/01/2018
Total Sit	eturn Peri e Area = Open Spa	od =	ACE WA	TER SI	1 0.632 0.632	Years Hectares (ha]		
		eable Area	I		0.002	115			
	Roof Area				0.00	ha	@		
		ding /Road	l Area =		0.63	ha	@		
	Vegetatior le Outflow				0.00 3.49	ha Litres/sec/ha]@	30%	
Allowab	le Outilow	-			0.40	Littes/360/16	<u> </u>		
Rainfall I	Data Obt	ained fro	om Met Fi	reann	1	1 hectare =	10,000m ²		
Kannan				leann	1				
Duration	Rainfall	Climate	Intensity	Rainfall	Proposed	Total	Allowable	Storage	
Duration	Kailiali	Change 10%	intensity	Naimai	Runoff	Runoff	Outflow	Req'd	
(min) 1	(mm)	1070	(mm/hr)	(m³/ha)	(m ³)	(m ³)	(m ³)	(m ³)	
2			0.00	0	0	0	0	0	
5			0.00	0	0	0	1	-1	
10			0.00	0	0	0	1	-1	
15	7	7.15	28.60	72	36	36	2	34	
30	8	9.02	18.04	90	46	46	4	42	
60 120	11 13	11.55 14.63	11.55 7.32	116 146	58 74	58 74	8	50 58	
240	13	14.63	4.68	146	95	95	16 32	58 63	
360	20	21.45	3.58	215	108	108	48	61	
720	25	27.28	2.27	273	138	138	95	43	
1440	32	34.65	1.44	347	175	175	191	-15	
2880	39	42.79	0.89	428	216	216	381	-165	
<u>Minimum v</u> Oversized Pipe dia. (mm)	Pipe Requ Length (m) 222		<u>iired =</u>	63	m ³ <u>Tank Req</u> Width Depth Length	Including for uuirements 10.0 1.0 6	10% climat m m m	te change	
900 1050 1200 1500	99 73 56 36			Y 🖡		x	2	,	

	NA							D ())	
Naturally Driver				C	ALCUL	ATION S	SHEEI	Ket No.	PG-WOP-04-DD-01
Project		WO	P Biom	nass S ⁱ	torage S	Slab B		Sheet No.	3 of 4
	0	c						Designer.	D.K
Element	G	reenfie	ld Rund	off and	Attenu	ation Ca	IC.	Date	26/01/2018
Total Si	Return Peri te Area = 1 Open Spa	od =	CE WA	TER ST	30	Years Hectares (ha) ha]		
Propose	ed Impermo Roof Area	eable Area	l		0.00	ha		100%	l
	Hard Stan		Area =		0.63	ha	@ @	80%	
	Vegitation				0.00	ha	@	30%	
	le Outflow				3.78	Litres/sec/ha]		•
Rainfall Duration	Data Obt Rainfall	ained fro Climate Change	m Met Ei Intensity	reann Rainfall	Proposed Runoff	<u>1 hectare = 1</u> Total Runoff	10,000m ² Allowable Outflow	Storage Req'd	l
		10%		(3)				_	
(min) 1	(mm)		(mm/hr)	(m ³ /ha)	(m ³)	(m ³)	(m ³)	(m ³)	
2			0.00	0	0	0	0	0	l
5			0.00	0	0	0	1	-1	
10			0.00	0	0	0	1	-1	
<u>15</u> 30	21 24	22.66 26.51	90.64 53.02	227 265	115 134	115 134	2 4	112 130	
60	24 28	31.13	31.13	311	154	154	9	130	
120	33	36.52	18.26	365	185	185	17	167	
240	39	42.79	10.70	428	216	216	34	182	
360	43	46.86	7.81	469	237	237	52	185	
720 1440	50 59	55.00 64.46	4.58 2.69	550 645	278 326	278 326	103 206	175 120	
2880	68	74.25	1.55	743	375	375	412	-37	
<u>Minimum</u> <u>Oversized</u> Pipe dia. (mm) 600 900 1050 1200 1500			<u>iired =</u>	185 Y	m ³ <u>Tank Reg</u> Width Depth Length	Including for uirements 10.0 1.0 19	10% climate	change	
				¥	↓	x	2		

Return Peri Site Area = ng Open Spa sed Imperm Roof Area Hard Stan Vegitation able Outflow	reenfie SURFA	Id Rund	off and	ORAGE	Slab B ation Cal		Sheet No. Designer. Date	4 of 4 D.K 26/01/2018
Return Peri Site Area = ng Open Spa sed Imperm Roof Area Hard Stan Vegitation able Outflow	SURFA			100 0.632 0.632 0.00 0.63	Years Hectares (ha) ha	<u>ANK</u>	Date	
Return Peri Site Area = ng Open Spa sed Imperm Roof Area Hard Stan Vegitation able Outflow	SURFA			100 0.632 0.632 0.00 0.63	Years Hectares (ha) ha	<u>ANK</u>		26/01/2018
Site Area = ng Open Spa sed Imperm Roof Area Hard Stan Vegitation able Outflow	od = ace = eable Area = ding /Road	 	TER ST	100 0.632 0.632 0.00 0.00 0.63	Years Hectares (ha) ha ha		100%	
Hard Stan Vegitation able Outflow	ding /Road) =	d Area =		0.63		@	100%	
able Outflow				0.00		@		
	<u> </u>			3.78	ha Litres/sec/ha	@	30%	
I Data Obt	ained fro	om Met E	ireann		<u>1 hectare = 10</u>	0,000m ²		
Rainfall	Climate	Intensity	Rainfall				•	
(mm)	10%	(mm/hr)	(m³/ha)	(m ³)	(m ³)	(m ³)	(m ³)	
		````	0	0	0	0		
		0.00	0	0	0	1	-1	
	00.50	0.00	0	0	0	1	-1	
39	42.46	42.46	425	215	215	9	206	
44	48.51	24.26	485	245	245	17	228	
							-	
				346	346			
71	78.32	3.26	783	396	396	206	190	
		<u>uired =</u>	252 Y		<u>uirements</u> 10.0 1.0 25	0% climate	change	
	Rainfall         (mm)         30         34         39         44         50         55         62         71         80         n value of st         ad Pipe Required         Length         (m)         890         395         291         222	Rainfall       Climate Change 10%         (mm)       10%         30       32.56         34       37.18         39       42.46         44       48.51         50       55.44         55       59.95         62       68.53         71       78.32         80       88.22         N value of storage requirements         Magnetic end Pipe Requirements         Length (m)         890         395         291         222	Rainfall       Climate Change 10%       Intensity (mm/hr)         (mm)       0.00         (mm/hr)       0.00         0.00       0.00         30       32.56       130.24         34       37.18       74.36         39       42.46       42.46         44       48.51       24.26         50       55.44       13.86         55       59.95       9.99         62       68.53       5.71         71       78.32       3.26         80       88.22       1.84	Change 10%       (mm/hr)       (m³/ha)         (mm)       0.00       0         0.00       0       0         0.00       0       0         0.00       0       0         30       32.56       130.24       326         34       37.18       74.36       372         39       42.46       42.46       425         44       48.51       24.26       485         50       55.44       13.86       554         55       59.95       9.99       600         62       68.53       5.71       685         71       78.32       3.26       783         80       88.22       1.84       882         n value of storage required =       252         ad Pipe Requirements       252         ad Pipe Requirements       252         ad 90       395       291       222	Rainfall       Climate Change 10%       Intensity (mm/hr)       Rainfall       Proposed Runoff         (mm)       10%       (m³/ha)       (m³)         0.00       0       0       0         0.00       0       0       0         0.00       0       0       0         0.00       0       0       0         0.00       0       0       0         30       32.56       130.24       326       165         34       37.18       74.36       372       188         39       42.46       42.46       425       215         44       48.51       24.26       485       245         50       55.44       13.86       554       280         55       59.95       9.99       600       303         62       68.53       5.71       685       346         71       78.32       3.26       783       396         80       88.22       1.84       882       446         Multion       Ength       Interset       Interset       Interset         Multion       890       395       291       222       Interset	Rainfall       Climate Change 10%       Intensity (mm/hr)       Rainfall       Proposed Runoff       Total Runoff         (mm)       0.00       0       0       0       0       0         0.00       0       0       0       0       0       0         0.00       0       0       0       0       0       0         0.00       0       0       0       0       0       0         30       32.56       130.24       326       165       165         34       37.18       74.36       372       188       188         39       42.46       42.52       215       215         44       48.51       24.26       485       245       245         50       55.44       13.86       554       280       280         55       59.95       9.99       600       303       303         62       68.53       5.71       685       346       346         71       78.32       3.26       783       396       396         80       88.22       1.84       882       446       446         446       446       446	Rainfall       Climate Change 10%       Intensity (mm/hr)       Rainfall (m ³ /ha)       Proposed Runoff       Total Runoff       Allowable Outflow         (mm)       10%       (mm/hr)       (m ³ /ha)       (m ³ )       (m ³ )       (m ³ )       (m ³ )         0       0.00       0       0       0       0       1         0.00       0       0       0       1       1       1       1         30       32.56       130.24       326       165       165       2       1         34       37.18       74.36       372       188       188       4       4         39       42.46       425       215       215       9       44       48.51       24.26       485       245       245       17       50       55.44       13.86       55.4       280       34       303       32.56       17.1       685       346       346       103         71       78.32       3.26       783       396       306       206       80       88.22       1.84       882       446       446       412         walue of storage required =       Tark Requirements         395       <	Rainfall       Climate Change 10%       Intensity (mm/hr)       Rainfall       Proposed Runoff       Total Runoff       Allowable Outflow       Storage Req'd         0       0.00       0       0       0       0       0       0         0       0.00       0       0       0       0       0       0         0       0.00       0       0       0       1       -1         30       32.56       130.24       326       165       165       2       162         34       37.18       74.36       372       188       188       4       184         39       42.46       42.46       425       215       215       17       228         50       55.44       13.86       554       280       280       34       246         55       59.95       9.99       600       303       303       52       252         62       68.53       5.71       685       346       346       103       243         71       78.32       3.26       783       396       296       190       36         80       88.22       1.84       882       446

E	Blackwater Return Period Rainfall Matrix - Received from Met Eireann													
			Retur	n Periods (	years)									
Duration	0.5	1	2	10	20	30	100							
15 min	4.4	6.5	7.6	14.6	18.2	20.6	29.6							
30 min	5.8	8.2	9.6	17.5	21.5	24.1	33.8							
60 min	7.6	10.5	12	21	25.4	28.3	38.6							
120 min	9.9	13.3	15.1	25.3	30.1	33.2	44.1							
240 min	12.9	17	19	30.3	35.5	38.9	50.4							
360 min	15.1	19.5	21.8	33.8	39.2	42.6	54.5							
12 hrs	19.7	24.8	27.3	40.5	46.3	50	62.3							
24 hrs	25.7	31.5	34.4	48.7	54.8	58.6	71.2							
48 hrs	32.4	38.9	42	57.2	63.6	67.5	80.2							
96 hrs	43.4	50.9	54.4	71.4	78.3	82.5	96							


							-
		CALCULATI	ON SHEE	т		Ref No.	PG-WOP-04-DD- 02
Project		WOP Bioma	ass - Bion	Sheet No.	1 of 4		
						Designer.	R.M.G
Element		Greenfield I	Runoff and	Date	16/05/2018		
Duneff Fatime		ned in accordance	e with the Greate	er Dublin Strategic	Drainage Study (	GDSDS)	
Runoff Estima Q _{bar} =	0.00108*(AREA) ^{0.89}	*(SAAR) ^{1.17} *(SOIL) ²	2.17				
SAAR =	000	Taken from Met Ei	roopp 1091 - 201	0 records			
SAAN =	902		reann 1901 - 201	TO TECOTOS			
SOIL = take	0.47		Taken from the	winter rain acceptane	ce potential map		
AREA 1km ²	= 100 ha						
1 ha =	= 10,000m ²						
*Note: Q _{bar} form Total Site Area	nula only suitable for 0.425	sites greater than /	equal to 50 hecta	Ares Hardstanding Area	0.425	Hectares	
Take	50	Hectares	E Contraction of the second seco	Roof Area	0.000	Hectares	
	0.50	km ²		Landscaped Areas	0.000	Hectares	
*Qbar	0.325	( m³/s )					
Surface Water							
	e calculation attached						
	wable runoff per site				d mun aff		
""" Note Storag	e is the volume requ	ired to attenuate the	surface water in	excess of green fiel	a runoff.		
A	A			Oala Allawahla	** 4 - 4	A = (+ = 1	7
Area Reference	Area	Calc. Allowable Runoff	Calc. Allowable Runoff	Calc. Allowable Runoff	**Actual Allowable runoff	Actual Allowable runoff	
	(ha)	(m ³ /s)	(l/s)	(l/s/ha)	(l/s/ha)	(l/s)	1
Development	0.43	0.00276	2.760	6.495	6.495	2.760	1
							Cumlative
	Multiplier	Поч	т		Flow	Storage	Storage
<u>Т</u> 1	Multiplier 0.85	Flow 2.346		1 Yr Throttle 30 - 1Yr Throttle	2.346 3.450	51 89	51 140
2	0.92	2.540		100 - 30 Yr Throttle	1.380	46	186
10	1.67	4.610			1		
20	1.96	5.410					
30	2.10	5.797					
50 100	2.33 2.60	6.432 7.177					
			J				
****Note Multipl	lier taken from GDSE	OS Appendix C					
	Storage Required	186	m ³				

				С	ALCUL	ATION S	SHEET	Ref No.	PG-WOP-04-DD-02				
Naturally Driver Project	1	WO	P Biom	ass St	orage	orage Slab B			2 of 4				
,								Designer.	R.M.G				
Element	Gı	reenfiel	d Runc	Attenu	ation Ca	lc.	Date	16/05/2018					
Storm R	Storm Return Period =       1       Years         Total Site Area =       0.425       Hectares (ha)												
Total Sit	e Area =				0.425	Hectares (ha	a)						
	Open Spa d Imperm	ace = eable Area	1		0.425	ha							
	Roof Area	-			0.00	ha	@	100%					
		ding /Road	l Area =		0.43	ha	@						
	Vegetation				0.00	ha	@	30%					
Allowab	le Outflow	=			2.35	Litres/sec/ha	-						
Rainfall I	Data Obt	ained fro	om Met E	ireann	]	<u>1 hectare =</u>	<u>10,000m²</u>						
Duration	Rainfall	Climate Change	Intensity	Rainfall	Proposed Runoff	Total Runoff	Allowable Outflow	Storage Req'd					
(min) 1	(mm)	10%	(mm/hr)	(m³/ha)	(m ³ )	(m ³ )	(m ³ )	(m ³ )					
2			0.00	0	0	0	0	0					
5			0.00	0	0	0	0	0					
10	_	- 45	0.00	0	0	0	1	-1					
<u>15</u> 30	7 8	7.15 9.02	28.60 18.04	72 90	24 31	24 31	1 2	23 29					
60	11	11.55	11.55	116	39	39	4	36					
120	13	14.63	7.32	146	50	50	7	43					
240	17	18.70	4.68	187	64	64	14	49					
360 720	20 25	21.45 27.28	3.58 2.27	215 273	73 93	73 93	22 43	51 50					
1440	32	34.65	1.44	347	118	118	86	32					
2880	39	42.79	0.89	428	145	145	172	-27					
<u>Oversized</u> Pipe dia.	Minimum value of storage required =       51       m³       Including for 10% climate change         Oversized Pipe Requirements       Tank Requirements         Pipe dia.       Length       Midth       10.0       m         (mm)       (m)       (m)       Ength       m												
(mm) 600 900 1050 1200 1500	(m) 182 81 59 45 29			Y 🖡		5 x							

BORD MÁÓ Naturally Driver				C	CALCUL	ATION	SHEET	Ref No.	PG-WOP-04-DD-02
	Project WOP Biomass Sto							Sheet No.	3 of 4
								Designer.	R.M.G
Element	Element Greenfield Runoff and Attenuation Calc.							Date	16/05/2018
Storm	Return Peri		CE WA	TER SI	ORAGE	<b>: PIPE/T</b>	<u>'ANK</u>		
Total Si	te Area =				0.425	Hectares (ha)	)		
	open Spa d Imperme				0.425	ha	-		
	Roof Area				0.00	ha	@	100%	1
	Hard Stan		I Area =		0.43	ha	@	80%	
	Vegitation le Outflow				0.00 2.54	ha Litroo/agg/ba	@	30%	l
Allowab		-			2.04	Litres/sec/ha	4		
Rainfall					4	1 hectare = 1	10,000m ² Allowable	Storage	1
Duration	Rainfall	Climate Change 10%	Intensity	Rainfall	Proposed Runoff	Total Runoff	Outflow	Storage Req'd	
(min)	(mm)	10 %	(mm/hr)	(m ³ /ha)	(m ³ )	(m ³ )	(m ³ )	(m ³ )	
1			0.00	0		0	0	0	1
25			0.00	0	0	0	0	0	
10			0.00	0	0	0	1	-1	
15	21	22.66	90.64	227	77	77	1	76	
<u> </u>	24 28	26.51 31.13	53.02 31.13	265 311	90 106	90 106	2 4	88 102	
120	33	36.52	18.26	365	124	124	8	102	
240	39	42.79	10.70	428	145	145	16	130	
360	43	46.86	7.81	469	159	159	23	136	
720	50	55.00	4.58	550	187	187	47	140	
1440 2880	59 68	64.46 74.25	2.69 1.55	645 743	219 252	219 252	93 187	126 66	
<u>Minimum</u> <u>Oversized</u> Pipe dia. (mm) 600 900 1050 1200 1500			<u>iired =</u>	140 Y ↓	m ³ <u>Tank Req</u> Width Depth Length	Including for uirements 10.0 1.0 14	10% climate	change	
					•	x			

BORD MAMÓ Naturally Driver	NA			C	CALCUI	LATION S	SHEET	Ref No.	PG-WOP-04-DD-02				
Project		WC	P Biom	nass St	orage	rage Slab B			4 of 4				
					ation Cal		Designer.	R.M.G					
Element	G	С.	Date	16/05/2018									
Total Si Existing	SURFACE WATER STORAGE : PIPE/TANK         Storm Return Period =       100       Years         Total Site Area =       0.425       Hectares (ha)         Existing Open Space =       0.425       ha         Proposed Impermeable Area       0.00       ha         Roof Area =       0.00       ha												
		=			0.00	ha ha	@	100% 80%					
	Vegitation	=	i Area =		0.43	ha	@ @	30%					
Allowab	le Outflow	=			2.54	Litres/sec/ha	]						
Rainfall	Data Obt	ained fro	om Met Ei	ireann		<u>1 hectare = 10</u>	0 <u>,000m²</u>						
Duration	Rainfall	Climate	Intensity	Rainfall	Proposed		Allowable	Storage					
		Change 10%			Runoff	Runoff	Outflow	Req'd					
(min)	(mm)		(mm/hr)	(m³/ha)	(m ³ )	(m ³ )	(m ³ )	(m ³ )					
1			0.00	0	0	0	0	0					
5			0.00	0	0	0	0	0					
10	20	22.56	0.00	0	0	0	1	-1					
15 30	30 34	32.56 37.18	130.24 74.36	326 372	111 126	<u>111</u> 126	1	110 124					
60	39	42.46	42.46	425	144	144	4	140					
120	44	48.51	24.26	485	165	165	8	157					
240	50	55.44	13.86	554	188	188	16	173					
360	55	59.95	9.99	600	204	204	23	181					
720 1440	62 71	68.53 78.32	5.71 3.26	685 783	233 266	233 266	47 93	186 173					
2880	80	88.22	1.84	882	300	300	187	113					
Minimum value of storage required =186m³Including for 10% climate changeOversized Pipe RequirementsTank RequirementsPipe dia.Length10.0m(mm)(m)10.0mm6006590052151051200165105105105													

Blackwater Return Period Rainfall Matrix - Received from Met Eireann												
	Return Periods (years)											
Duration	0.5	1	2	10	20	30	100					
15 min	4.4	6.5	7.6	14.6	18.2	20.6	29.6					
30 min	5.8	8.2	9.6	17.5	21.5	24.1	33.8					
60 min	7.6	10.5	12	21	25.4	28.3	38.6					
120 min	9.9	13.3	15.1	25.3	30.1	33.2	44.1					
240 min	12.9	17	19	30.3	35.5	38.9	50.4					
360 min	15.1	19.5	21.8	33.8	39.2	42.6	54.5					
12 hrs	19.7	24.8	27.3	40.5	46.3	50	62.3					
24 hrs	25.7	31.5	34.4	48.7	54.8	58.6	71.2					
48 hrs	32.4	38.9	42	57.2	63.6	67.5	80.2					
96 hrs	43.4	50.9	54.4	71.4	78.3	82.5	96					



# Appendix D

Biomass Storage Slabs Typical Attenuation Storage Details - Tubosider

# STORMWATER ATTENUATION TANKS









**TUBOSIDER** Stormwater Attenuation Tanks are fabricated from Helibore pipe which is a fully BBA Certified product.

**TUBOSIDER** tanks offer the most cost effective and flexible underground storage solution on the market.

**TUBOSIDER** have supplied, on average, over 100 tanks per year since 1987.

## FEATUES & BENEFITS

- Concrete chambers or cellular type systems are limited by size and shape whereas **TUBOSIDER** fabricated tanks can be fabricated to an infinite variety of layouts using pipes from 0.3m diameter to 3.6m.
- **TUBOSIDER** tanks are accessible for routine inspection. This is now a fundamental requirement with many authorities and is impossible using "cellular" or "crate" systems.
- Load bearing strength. Designed structurally to Highways Agency Standard BD12, TUBOSIDER tanks will carry full motorway live loads if required.
- Fully pre-fabricated. Tanks include access shafts, ladders, inlet and outlet connections, all factory fabricated. There is no concrete work or fabrication work on-site. Tanks are assembled from components using standard gasketed joints. The fastest system there is to install.
- **TUBOSIDER** can supply and factory fit Flow Regulators to restrict discharge to the specified rate. This eliminates the need for expensive regulator chambers, which are required with "crate" type systems.
- **TUBOSIDER** gasketed joints are fully tested and WRc approved to "Sewers for Adoption" standards of watertightness.



### DESIGN

**TUBOSIDER** can assist at every stage of your attenuation project. Working from a capacity calculated by others we can develop a tank layout to fit the particular location or, given:-

- Return Period
- Permissible Discharge Rate
- Site Dimensions

We will provide free;

- Outline design and drawing
- Flow regulation requirement
- Installation instructions
- Cost estimate

Conservation of Conservation o



### DURABILITY

All pipe is manufactured from high quality pre-galvanised coil to BS EN 10143 with 305gms/m² zinc coating on each surface. This is normally adequate to provide a design life of 50 - 60 years in non-aggressive environments.



## PUMPED SYSTEMS

For aggressive environments or combined sewer applications, Trenchcoat Polymer secondary coating is utilised giving a BBA Certified add on life of 50 years in an aggressive environment.

Increasingly, storage volumes cannot be achieved with conventional gravity systems. In these cases, **TUBOSIDER** can incorporate pump chambers and supply and fit submersible electric pumps complete with switchgear and control panels.



# INSTALLATION OF STORMWATER ATTENUATION TANK



Tubosider United Kingdom Ltd10 Sutton Fold Industrial Estate, Off Lancots Lane, Sutton, St Helens, WA9 3EX

Telephone: 01744 452900 Fax: 01744 452949 Email: sales@tubosider.co.uk **Website: www.tubosider.co.uk**